ON Semiconductor ## Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, ON Semiconductor® # FGA25S125P 1250 V, 25 A Shorted-anode IGBT #### **Features** - · High Speed Switching - Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_{C} = 25 \text{ A}$ - High Input Impedance - · RoHS Compliant ## **Applications** • Induction Heating, Microwave Oven ## **General Description** Using advanced field stop trench and shorted-anode technology, ON Semiconductor's shorted-anode trench IGBTs offer superior con-duction and switching performances for soft switching applications. The device can operate in parallel configuration with exceptional avalanche capability . This device is designed for induction heating and microwave oven. ## **Absolute Maximum Ratings** | Symbol | Description | | FGA25S125P-SN00337 | Unit | | |---------------------|---|--------------------------|--------------------|------|--| | V _{CES} | Collector to Emitter Voltage | | 1250 | V | | | V _{GES} | Gate to Emitter Voltage | | ± 25 | V | | | I _C | Collector Current | @ T _C = 25°C | 50 | А | | | | Collector Current | $@ T_C = 100^{\circ}C$ | 25 | А | | | I _{CM (1)} | Pulsed Collector Current | | 75 | А | | | I _F | Diode Continuous Forward Current | @ T _C = 25°C | 50 | А | | | | Diode Continuous Forward Current | $@ T_C = 100^{\circ}C$ | 25 | А | | | P _D | Maximum Power Dissipation | @ T _C = 25°C | 250 | W | | | | Maximum Power Dissipation | @ T _C = 100°C | 125 | W | | | T _J | Operating Junction Temperature | | -55 to +175 | °C | | | T _{stg} | Storage Temperature Range | | -55 to +175 | °C | | | T _L | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds | | 300 | °C | | ### **Thermal Characteristics** | Symbol | Parameter | Тур. | Max. | Unit | |---|---|------|------|------| | $R_{\theta JC}(IGBT)$ | Thermal Resistance, Junction to Case, Max | - | 0.6 | °C/W | | R _{0JA} Thermal Resistance, Junction to Ambient, Max | | - | 40 | °C/W | #### Notes: 1: Limited by Tjmax ## **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |-----------------------|------------------------|---------|-----------|------------|----------| | FGA25S125P | FGA25S125P
-SN00337 | TO-3PN | - | - | 30 | # Electrical Characteristics of the IGBT $T_C = 25^{\circ}\text{C}$ unless otherwise noted | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------|--|---|---------|--|------|----------| | Off Charac | teristics | | | | | | | BV _{CES} | Collector to Emitter Breakdown Voltage | V _{GE} = 0 V, I _C = 1 mA | 1250 | - | - | V | | ΔBV _{CES} | Temperature Coefficient of Breakdown Voltage | $V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$ | - | 1.2 | - | V/ºC | | I _{CES} | Collector Cut-Off Current | V _{CE} = 1250V, V _{GE} = 0V | - | - | 1 | mA | | I _{GES} | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0V$ | - | - | ±500 | nA | | On Charac | teristics | , | <u></u> | ı | | | | V _{GE(th)} | G-E Threshold Voltage | I _C = 25mA, V _{CE} = V _{GE} | 4.5 | 6.0 | 7.5 | V | | V _{CE(sat)} | Collector to Emitter Saturation Voltage | I _C = 25A, V _{GE} = 15V
T _C = 25°C | - | 1.8 | 2.35 | V | | | | I _C = 25A, V _{GE} = 15V
T _C = 125°C | - | 2.05 | - | V | | | | I _C = 25A, V _{GE} = 15V,
T _C = 175°C | - | 2.16 | - | V | | | | I _F = 25A, T _C = 25°C | - | 1.7 | 2.4 | V | | V_{FM} | Diode Forward Voltage | I _F = 25A, T _C = 175°C | - | 2.1 | - | V | | C _{ies} | Input Capacitance | V _{CE} = 30V, V _{GE} = 0V, | - | 2150 | - | pF
pF | | Dynamic C | haracteristics | | | | | | | C _{oes} | Output Capacitance | $V_{CE} = 30V_{,} V_{GE} = 0V_{,}$
f = 1MHz | - | 48 | - | pF | | C _{res} | Reverse Transfer Capacitance | 1 - 11411 12 | - | 36 | - | pF | | Switching | Characteristics | | | | | | | t _{d(on)} | Turn-On Delay Time | | - | 24 | - | ns | | t _r | Rise Time | | - | 250 | - | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{CC} = 600V, I_{C} = 25A,$ | - | 502 | - | ns | | t _f | Fall Time | $R_G = 10\Omega$, $V_{GE} = 15V$, | - | 138 | - | ns | | E _{on} | Turn-On Switching Loss | Resistive Load, T _C = 25°C | - | 1085 | - | uJ | | E _{off} | Turn-Off Switching Loss | | - | 580 | - | uJ | | E _{ts} | Total Switching Loss | | - | 1665 | - | uJ | | t _{d(on)} | Turn-On Delay Time | | - | 21.2 | - | ns | | t _r | Rise Time | 1 | - | 304 | - | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{CC} = 600V, I_{C} = 25A,$ $R_{G} = 10\Omega, V_{GE} = 15V,$ Resistive Load,, $T_{C} = 175^{\circ}C$ | - | 490 | - | ns | | t _f | Fall Time | | - | 232 | - | ns | | E _{on} | Turn-On Switching Loss | | - | 1310 | - | uJ | | E _{off} | Turn-Off Switching Loss | | - | 952 | - | uJ | | E _{ts} | Total Switching Loss | 1 | - | 2262 | - | uJ | | Q _g | Total Gate Charge | | - | 204 | - | nC | | | <u>-</u> | $V_{CE} = 600V, I_{C} = 25A,$
$V_{GE} = 15V$ | - | | - | _ | | Q _{ge} | Gate to Emitter Charge | VCE = 000 V, IC = 25A, | - | 15 | - | nC | **Figure 1. Typical Output Characteristics** Figure 3. Typical Saturation Voltage Characteristics Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level **Figure 2. Typical Output Characteristics** Figure 4. Transfer Characteristics Figure 6. Saturation Voltage vs. V_{GE} Figure 7. Saturation Voltage vs. V_{GE} Figure 9. Gate charge Characteristics Figure 11. Turn-on Characteristics vs. Gate Resistance **Figure 8. Capacitance Characteristics** Figure 10. SOA Characteristics Figure 12. Turn-off Characteristics vs. Gate Resistance Figure 13. Turn-on Characteristics vs. Collector Current Figure 15. Switching Loss vs. Gate Resistance Figure 17. Turn off Switching SOA Characteristics Figure 14. Turn-off Characteristics vs. Collector Current Figure 16. Switching Loss vs. Collector Current Figure 18. Forward Characteristics Figure 19. Transient Thermal Impedance of IGBT ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative