onsemi

NPT Trench IGBT

1200 V, 25 A

FGA25N120ANTDTU

Description

Using **onsemi**'s proprietary trench design and advanced NPT Technology, the 1200 V NPT IGBT offers superior conduction and switching performances, high avalanche ruggedness and easy parallel operation. This device is well suited for the resonant or soft switching application such as induction heating, microwave oven.

Features

- NPT Trench Technology, Positive Temperature Coefficient
- Low Saturation Voltage: $V_{CE(sat)}$, typ = 2.0 V @ I_C = 25 A and T_C = 25°C
- Low Switching Loss: $E_{CE \text{ off, typ}} = 0.96 \text{ mJ}$ @ $I_C = 25 \text{ A}$ and $T_C = 25^{\circ}C$
- Extremely Enhanced Avalanche Capability
- This Device is Pb-Free Halide, Free and RoHS Compliant

Applications

• Induction Heating, Microwave Oven

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V_{CES}	Collector-Emitter Voltage	1200	V	
V_{GES}	Gate-Emitter Voltage	±20		
Ι _C	C Collector Current (@ $T_C = 25^{\circ}C$)		А	
	Collector Current (@T _C = 100°C)	25		
I _{CM}	Pulsed Collector Current (Note 1)	90	А	
١ _F	Diode Continuous Forward Current $(@T_C = 25^{\circ}C)$	50	A	
	Diode Continuous Forward Current (@T _C = 100°C)	25	A	
I _{FM}	Diode Maximum Forward Current	150	А	
PD	Maximum Power Dissipation (@T _C = 25°C)	312	W	
	Maximum Power Dissipation (@T _C = 100°C)	125	W	
TJ	Operating Temperature Range	–55 to +150	°C	
T _{STG}	Storage Temperature Range	-55 to +150	°C	
ΤL	Maximum Lead Temp for Soldering Purpose, 1/8" from Case for 5 s	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. NOTES:

1. Repetitive Rating: Pulse-width limited by maximum junction temperature.

TO-3P-3 CASE 340BZ

MARKING DIAGRAM

FGA25N120	= Specific Device Code
А	= Assembly Location
YWW	= Date Code (Year and Week)
ZZ	= Assembly Lot Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter		Unit
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	0.4	°C/W
$R_{\theta JC}$ (DIODE)	Thermal Resistance, Junction to Case	2.0	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	40	°C/W

ORDERING INFORMATION

Pa	rt Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGA25N1	20ANTDTU-F109	FGA25N120ANTD	TO-3PN	Tube	N/A	N/A	30

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Characte	ristics	•	-	-	-	-
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	3	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±250	nA
On Characte	ristics					
V _{GE(th)}	G-E Threshold Voltage	I_{C} = 25 mA, V_{CE} = V_{GE}	3.5	5.5	7.5	V
V _{CE(Sat)}	Collector to Emitter Saturation Voltage	I _C = 25 A, V _{GE} = 15 V	-	2.0	-	V
		I_{C} = 25 A, V_{GE} = 15 V, T_{C} = 125°C	-	2.15	-	V
		I _C = 50 A, V _{GE} = 15 V	-	2.65	-	V
Dynamic Cha	aracteristics	_				
Cies	Input Capacitance	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	-	3700	-	pF
Coes	Output Capacitance		-	130	-	pF
C _{res}	Reverse Transfer Capacitance		-	80	-	pF
Switching Ch	naracteristics					
t _{d(on)}	Turn-On Delay Time	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 600 \; V, \; I_C = 25 \; A, \\ R_G = 10 \; \Omega, \; V_{GE} = 15 \; V, \\ Inductive \; Load, \; T_C = 125^\circ C \end{array}$	-	50		ns
t _r	Rise Time		-	60		ns
t _{d(off)}	Turn-Off Delay Time		-	190		ns
t _f	Fall Time		-	100		ns
Eon	Turn-On Switching Loss		-	4.1		mj
E _{off}	Turn-Off Switching Loss		-	0.96		mj
E _{ts}	Total Switching Loss		-	5.06		mj
t _{d(on)}	Turn-On Delay Time	$V_{\rm CC} = 600 \text{ V}, \text{ I}_{\rm C} = 25 \text{ A},$	-	50		ns
t _r	Rise Time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 125^{\circ}C$	-	60		ns
t _{d(off)}	Turn-Off Fall Time]	-	200		ns
t _f	Fall Time	1	-	154		ns
Eon	Turn-On Switching Loss]	-	4.3		mj
E _{off}	Turn-Off Switching Loss		-	1.5		mj
E _{ts}	Total Switching Loss		-	5.8		mj
Qg	Total Gate Charge	V_{CE} = 600 V, I_{C} = 25 A, V_{GE} = 15 V	-	200		nC
Q _{ge}	Gate-Emitter Charge	1	-	15		nC
Q _{gc}	Gate-Collector Charge	1	_	100		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 25 A	$T_{C} = 25^{\circ}C$	-	2.0	3.0	V
			T _C = 125°C	-	2.1	-	
t _{rr}	rr Diode Reverse Recovery Time	I _F = 25 A, dI _F /dt = 100 A/μs	$T_{C} = 25^{\circ}C$	-	235	350	ns
			T _C = 125°C	-	300	-	
l _{rr}	Diode Peak Reverse Recovery		$T_{C} = 25^{\circ}C$	-	27	40	А
	Current		T _C = 125°C	-	31	-	
Q _{rr}	Diode Reverse Recovery Charge		$T_{C} = 25^{\circ}C$	-	3130	4700	nC
			T _C = 125°C	-	4650	-	1

ELECTRICAL CHARACTERISTICS OF DIODE (T_C = 25° C unless otherwise noted)

120 180 $T_{C} = 25^{\circ}C$ 20 V 15 V Common Emitter 160 12 V 17 10 V V_{GE} = 15 V 100 $T_C = 25^{\circ}C$ l_C, Collector Current (A) 140 I_C, Collector Current (A) T_C = 125°C- - -120 80 9 V 100 60 80 40 60 8 V 40 20 7 V 20 $V_{GE} = 6 V$ 0 0 2 8 10 0 4 6 2 3 5 0 4 1 V_{CE}, Collector–Emitter Voltage (V) V_{CE}, Collector–Emitter Voltage (V) **Figure 1. Typical Output Characteristics** Figure 2. Typical Saturation Voltage Characteristics 3.0 20 Common Emitter Common Emitter V_{CE}, Collector Emitter Voltage (V) V_{CE}, Collector Emitter Voltage (V) $V_{GE} = 15 V$ $T_C = -40^{\circ}C$ 16 2.5 40 A 12 8 I_C = 25 A 2.0 40 A 25 A 4 = 12.5 Α I_C 1.5 0 25 50 75 100 125 0 4 8 12 16 20 V_{GE}, Collector–Emitter Voltage (V) T_C, Case Temperature (°C) Figure 3. Saturation Voltage vs. Case Figure 4. V_{GE} vs Saturation Voltage **Temperature at Variant Current Level** 20 20 V_{CE}, Collector Emitter Voltage (V) Common Emitter Common Emitter V_{CE}, Collector Emitter Voltage (V) T_C = 125°C $T_C = 25^{\circ}C$ 16 16 12 12 8 8 40 A 40 A 25['] A 25 Å 4 4 12.5 I_C = 12.5 A 0 0 8 12 16 20 4 8 12 16 0 4 0 20 V_{GE}, Gate-Emitter Voltage (V) V_{GE}, Gate-Emitter Voltage (V) Figure 5. V_{GE} vs. Saturation Voltage Figure 6. V_{GE} vs. Saturation Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

Figure 17. Transient Thermal Impedance of IGBT

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ

ISSUE O

DATE 31 OCT 2016

DOCUMENT NUMBER:	98AON13862G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TO-3P-3LD / EIAJ SC-65,	PAGE 1 OF 1				
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>