

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

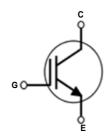
April 2008

FGA180N33AT 330V, 180A PDP Trench IGBT

Features

- High Current Capability
- Low saturation voltage: V_{CE(sat)} =1.03V @ I_C = 40A
- High input impedance
- · RoHS compliant

Applications


PDP SYSTEM

General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		330	V
V _{GES}	Gate to Emitter Voltage		± 30	V
I _C	Collector Current	@ $T_C = 25^{\circ}C$	180	A
I _{C pulse (1)}	Pulsed Collector Current	@ T _C = 25°C	450	А
P _D	Maximum Power Dissipation	$^{\circ}$ T _C = 25 $^{\circ}$ C	390	W
	Maximum Power Dissipation	$^{\circ}$ T _C = 100 $^{\circ}$ C	156	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes

1: Repetitive test, pulse width = 100usec, Duty = 0.1

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.32	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

^{*} I_C pulse limited by max Tj

Package Marking and Ordering Information

			Packaging		Max Qty per
Device Marking	Device	Package	Туре	Qty per Tube	Box
FGA180N33AT	FGA180N33ATTU	TO-3P	Tube	30ea	-

Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	eteristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250 \mu A$	330	-	-	V
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	μΑ
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 250uA$, $V_{CE} = V_{GE}$	2.5	4.0	5.5	V
· · · · · ·		I _C = 40A, V _{GE} = 15V	-	1.1	1.4	V
Va=(Collector to Emitter Saturation Voltage	I _C = 180A, V _{GE} = 15V,	-	1.68	-	V
V _{CE(sat)}	Collector to Efficient Saturation voltage	I _C = 180A, V _{GE} = 15V T _C = 125°C	-	1.89	-	V
Dynamic C	Characteristics		1	ı		
C _{ies}	Input Capacitance	V _{CE} = 30V, V _{GE} = 0V,	-	3880	-	pF
C _{oes}	Output Capacitance		-	305	-	pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	180	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	27	-	ns
t _r	Rise Time	$V_{CC} = 200V, I_{C} = 40A,$	-	80	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 5\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 25^{\circ}C$	-	108	-	ns
t _f	Fall Time		-	180	240	ns
t _{d(on)}	Turn-On Delay Time		-	26	-	ns
t _r	Rise Time	V_{CC} = 200V, I_{C} = 40A, R_{G} = 5 Ω , V_{GE} = 15V, Resistive Load, T_{C} = 125°C	-	75	-	ns
t _{d(off)}	Turn-Off Delay Time		-	112	-	ns
t _f	Fall Time		-	250	300	ns
Q _g	Total Gate Charge		-	169	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 200V, I_{C} = 40A,$	-	22	-	nC
Q _{gc}	Gate to Collector Charge	V _{GE} = 15V	-	69	-	nC

Figure 1. Typical Output Characteristics

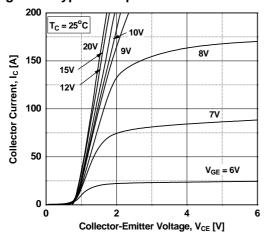


Figure 3. Typical Saturation Voltage Characteristics

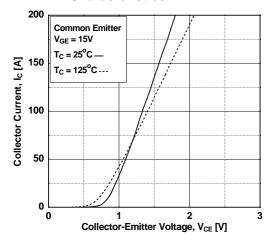
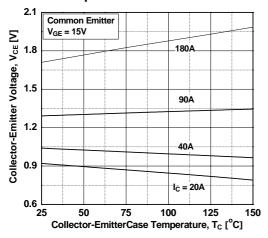



Figure 5. Saturation Voltage vs. Case
Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

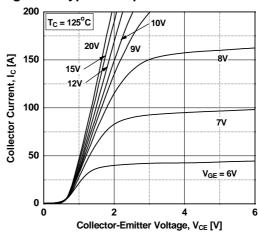


Figure 4. Transfer Characteristics

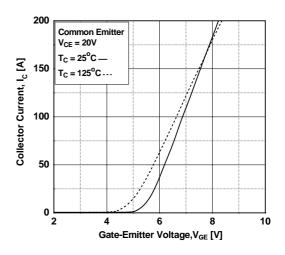


Figure 6. Saturation Voltage vs. V_{GE}

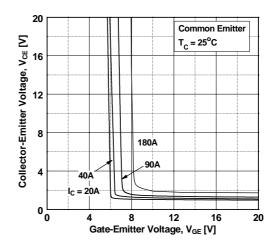


Figure 7. Saturation Voltage vs. V_{GE}

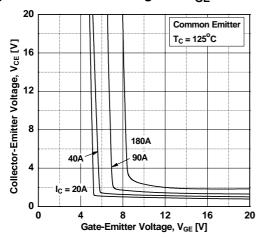


Figure 9. Gate charge Characteristics

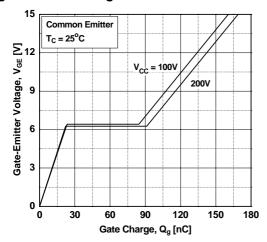
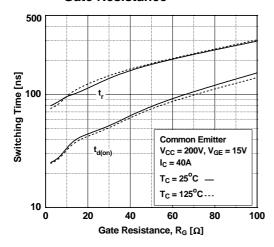



Figure 11. Turn-on Characteristics vs.
Gate Resistance

Figure 8. Capacitance Characteristics

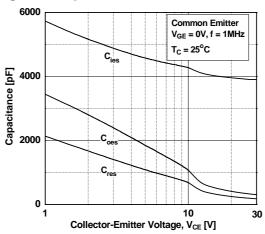


Figure 10. SOA Characteristics

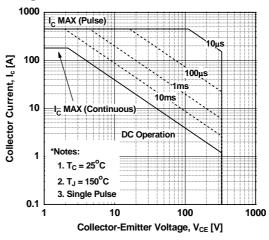


Figure 12. Turn-off Characteristics vs.
Gate Resistance

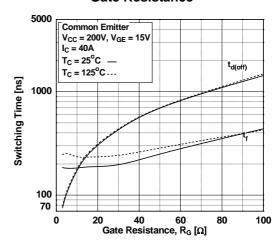


Figure 13. Turn-on Characteristics vs. Collector Current

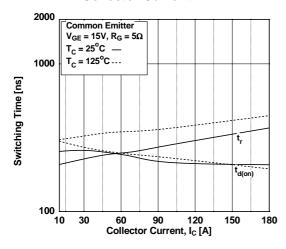


Figure 14. Turn-off Characteristics vs. Collector Current

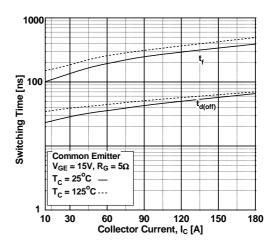
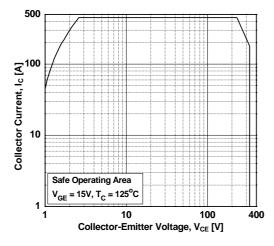
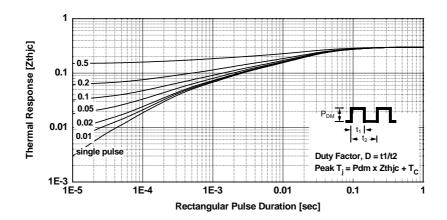
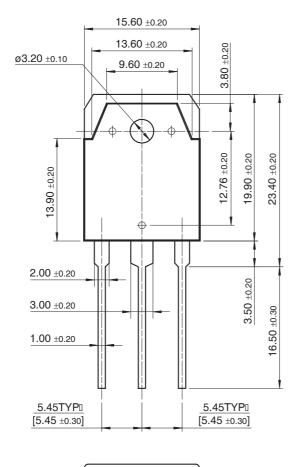
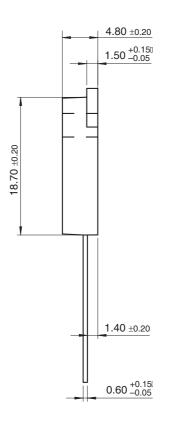




Figure 15. Turn off Switching SOA Characteristics





Mechanical Dimensions

TO-3P

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx® FPSTM PDP-SPM™ The Power Franchise® Build it Now™ F-PFS™ Power-SPM™ uwer FRFET® CorePLUS™ PowerTrench® CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinyBoost™ QFET® CROSSVOLT™ Green FPS™ TinyBuck™ CTL™ TinyLogic[®] Green FPS™ e-Series™ OSTM Current Transfer Logic™ **GTO™** Quiet Series™ TINYOPTO™ EcoSPARK[®] IntelliMAX™ RapidConfigure™ TinvPower™ EfficentMax™ TinyPWM™ ISOPLANAR™ Saving our world 1mW at a time™ TinyWire™ EZSWITCH™ * SmartMax™ MegaBuck™ µSerDes™ SMART START™ MICROCOUPLER™ SPM[®] MicroFET™ MicroPak™ STEALTH™ airchild[®] **UHC**® MillerDrive™ SuperFET™ Fairchild Semiconductor® SuperSOT™-3 MotionMax[™] Ultra FRFET™ FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 UniFET™ OPTOLOGIC® FACT[®] SuperSOT™-8 VCX^{TM} FAST[®] OPTOPLANAR® SuperMOS™ VisualMax™ FastvCore™ SYSTEM ®

DISCLAIMER

FlashWriter® *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserve the right to make changes at any time without notice to improve the design		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev I34

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative