

Ignition Gate Drive IC FAD1110-F085

Description

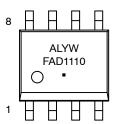
The FAD1110–F085 is designed to directly drive an ignition IGBT and control the current and spark event of the coil. The coil current is controlled via the input pin. When the differential input is driven high, the output of the FAD1110–F085 is enabled to turn on the IGBT and start charging the coil.

An input spike filter suppresses differential input signals of less then 13 μs in duration. A Max Dwell timer is included in the FAD1110–F085 which will turn off the IGBT if the input stays active for longer than the programmed time. This time interval can be modified through an external capacitor. When the Max Dwell timer is exceeded, the FAD1110–F085 will enter a Hard–Shut–Down mode (HSD) and turn off the IGBT immediately. The FAD1110–F085 will also limit the collector current of the IGBT to $I_{C(lim)}$ during charging. This again is done through the sense resistor in the emitter leg of the Ignition IGBT developing a signal input to the V_{SENSE} pin of the FAD1110–F085.

Features

- Differential Input for Ground Shift Disturbances Suppression
- Signal Line Input Buffer
- Input Spike Filter
- Operation from Ignition or Battery Line
- Ground Shift Tolerance 2 V to 3 V
- Programmable Maximum Dwell Time
- Control IGBT Current Limiting through V_{SENSE} Pin
- Hard Shutdown Following Max Dwell Time Out
- This is a Pb-Free Device

Applications


The FAD1110–F085 is an advanced Ignition IGBT control IC available in a SO8 package or die sales. This full featured Smart Ignition IGBT Driver is particularly advantageous in "switch on coil" applications where size and system performance of the ignition driver are important.

1

SOIC8 CASE 751EB

MARKING DIAGRAM

FAD1110 = Specific Device Code
AL = Assembly Lot Code
Y = Year
W = Work Week
Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Part Number	Operating Temperature Range	re Range Package Shipping [†]	
FAD1110-F085	−40°C to 150°C	8-SOIC	2500 units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Recommended External Components

TYPICAL EXTERNAL COMPONENTS

Component	Description	Vendor	Parameter	Тур.	Unit
R _{BAT}	Limits transient currents during load dump		R	200 to 300	Ω
C _{BAT}	Battery or Ignition voltage filtering		С	0.47	μF
C _{BAT1}	Battery noise transients		С	10	nF
C _{INC}	Noise immunity		С	10	nF
C _{IND}	Differential mode Noise immunity		С	1	nF
R _{SENSE}	Sense the collector current		R	20	m $Ω$
R _{INH}	Input Res High		R	1	kΩ
R _{INL}	Input Res Low		R	1	kΩ
R _{IN}	Adjust input impedance		R		Ω

Typical Application

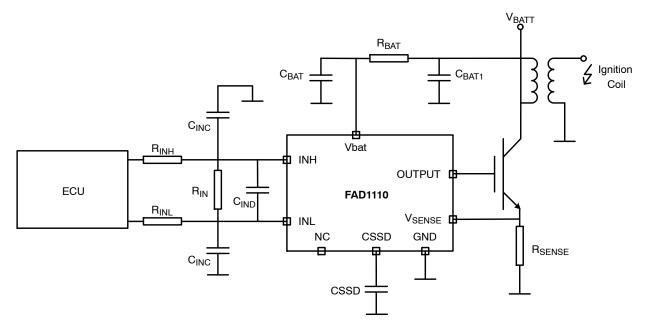


Figure 1. Typical Application

Block Diagram

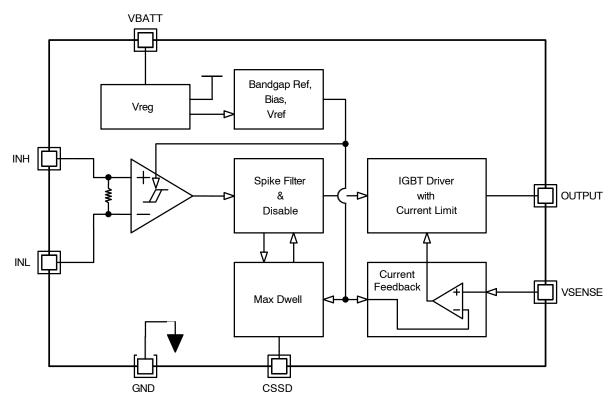


Figure 2. Block Diagram

Package Outline

The FAD1110-F085 is assembled in an 8 lead SOIC Package.



Figure 3. Pin Assignment (Top View)

PIN DESCRIPTION

Name	Туре	Description
Pin1	GND	Ground Reference of the Control IC
Pin2	INL	Input ground signal
Pin3	INH	Positive input signal referenced to INL
Pin4	CSSD	Adjust maximum dwell time (to external capacitor)
Pin5	NC	
Pin6	Output	Gate Drive to the IGBT
Pin7	V _{SENSE}	Sense Input used for Ilim function
Pin8	V _{BAT}	Supply voltage

ABSOLUTE MAXIMUM RATINGS (-40°C to 150°C unless otherwise stated)

Symbol	Parameter	Min.	Max.	Unit
V_{BAT}	Voltage at V _{BAT} pin (excl. EMC transients)	-0.3	28	V
V_{INH}	Voltage at Input pin High	-5	18	V
V_{INL}	Voltage at Input pin Low	-5	18	V
V _{CSSD}	Voltage at C _{SSD}	-0.3	3.6	V
V _{OUTPUT}	Voltage at Gate Output	-0.3	6.5	V
V _{SENSE}	Voltage on V _{SENSE} pin	0	400	mV
T_J , T_{STG}	Operating and Storage Temperature Range	-40	150	°C
P _{MAX}	Maximum power dissipation (continuous) at T _C = 25°C		0.625	W
$R_{ hetaJC}$	Thermal Resistance - Junction-to-Case (typical)		200	°C/W
$$V_{ESD}$$ (pin to pin incl. V_{INH} and $V_{INL})$	Electrostatic Discharge Voltage (Human Body Model) according to MIL STD 883D, method 3015.7 and EOS/ESD Assn. standard S5.1 – 1993		2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS (Reference Load Characteristics) (Note 1)

Symbol	Characteristic	Min.	Тур.	Max.	Units
I _{Ctyp}	Collector (Coil) Operating Current		12		Α
L _P	Coil Primary Inductance		1.5		mH
R _P	Coil Primary Resistance (25°C)		0.4		Ω
R _{LOAD}	Load Resistance (for delay time measurements)		2		Ω

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

FLECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
OWER SUPP	PLY CONDITIONS V _{BAT} = 6 to 28 \	I ; T _J = -40° C to 150°C (unless otherwise specifi	ed)	•		
V _{BAT1}	Operating voltage	Coil switching function	4		28	V
V _{BAT2}	Operating voltage	All functions	6		28	٧
I _{BAT}	Supply current	T _J = 150 °C, V _{BAT} = 28 V, Input = 5 V			4	mA
V_{CLAMP}	V _{BATTERY} clamp	I _{BATT} = 10 mA	33		40	V
SENSE PIN CO	ONDITIONS $V_{BAT} = 6 \text{ to } 28 \text{ V} ; T_J$	= -40°C to 150 °C (unless otherwise specified)				
V_{LIMIT}	Sense Voltage at current limit		200	220	240	mV
T _{SPIKE}	Input spike filter	Delay on rising and falling edge of Input		13		μs
T _{D1}	Turn on delay time	(Time from Input = 4.0 V to V _{OUT} = 4.0 V)		17		μs
T _{D2}	Turn off delay time	(Time from Input = 0.5 V to V _{C-GND} = 1.0 V)		17		μs
NPUT CONTE	ROL CONDITIONS V _{BAT} = 6 to 28	V ; $T_J = -40^{\circ}$ C to + 150°C (unless otherwise spec	ified)			
V _{INLD}	Differential Input low voltage	INL = GND	1.3	1.7	2.1	V
V _{INHD}	Differential Input high voltage	INL = GND	1.7	2.2	2.7	V
V _{INHys}	Input voltage hysteresis		0.25	0.5	0.75	V
I _{IN}	Input current	V _{BAT} = 0 V, INL = GND		0.10xV _{INH}		mA
I _{IN}	Input current	6 V < V _{BAT} < 20 V, INL = GND		0.10xV _{INH}		mA
V _{CM}	Common mode voltage	Between V _{INH} and V _{INL} reference to GND	-2		3	V
V _{INHGF}	Floating INH voltage	(6 V < V_S < 20 V_{INH} and INL floating) refer to GND @ T = 25°C		0.5		V
V _{INLGF}	Floating INL voltage	(6 V < V_S < 20 V_{INH} and INL floating) refer to GND @ T = 25°C		0.5		V
SATE OUTPU	T VOLTAGE MAX V _{BAT} = 6 to 28 \	T ; T _J = -40° C to 150°C (unless otherwise specific	ed)			
V_{GMAX}	Vgate max	16 KΩ pulldown resistor	4.5	5.4	6	V
V_{GLOW}	Vgate low	(0 mA < I _{GATE} < 0.4 mA @ T = 25°C)	0.0		0.4	V
DIAGNOSTIC	FUNCTIONS AND PROTECTION	$V_{BAT} = 6$ to 28 V ; $T_J = -40^{\circ}$ C to 150°C (unless of	otherwise	e specified)		
CSSD _{MIN}	Minimum dwell time capacitor			5		nF
TD _{MAX}	Maximum dwell time	(CSSD = 50 nF)	65	100	135	ms
I _{CSSD1}	CSSD Pin current for TDMAX		0.75	1.0	1.25	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} onsemi does not recommend exceeding them or designing to Absolute Maximum Ratings. (-40°C to 150°C unless otherwise stated)

TYPICAL PERFORMANCE CHARACTERISTICS

Input and Spike Filter

When the differential input signal voltage between INH and INL pins reaches $V_{\rm INHD}$, the IGBT will be switched on charging the coil. When this differential input voltage goes below $V_{\rm INLD}$, the coil current through the IGBT will be turned off. Positive and negative spikes of less than $T_{\rm SPIKE}$ duration at the input line will be filtered out and will not turn on/off the IGBT.

Maximum Dwell Time and Hard-Shutdown (HSD)

When the IGBT is turned on, a delay timer, dependent on the value of the external CSSD capacitor (see Figure 5), is started. If a valid falling edge has not been received after the time T_{DMAX} , the IGBT will be turned off immediately as shown in Figure 4.

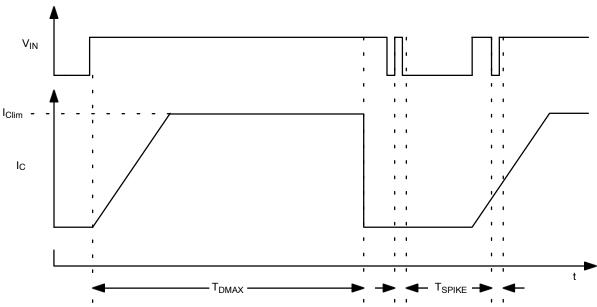


Figure 4. Dwell Time and Hard-Shut-Down

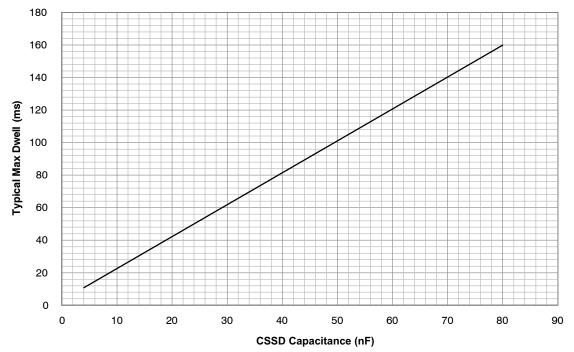
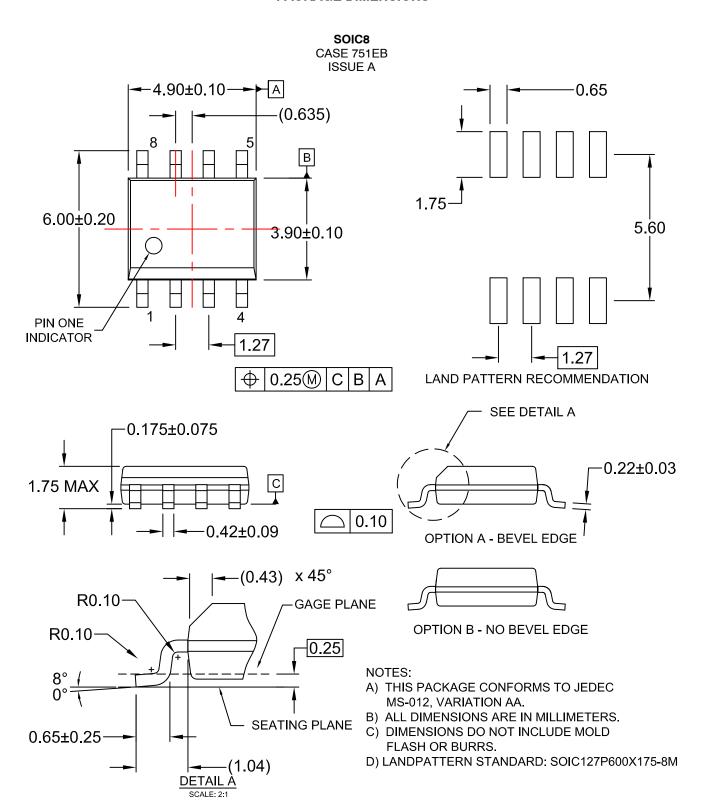



Figure 5. T_{DMAX} as Function of External CSSD Capacitor

PACKAGE DIMENSIONS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales